

1.	The fi A) C)	inction $f: \mathbb{R} \rightarrow$ injective but in bijective		• •	f(x) = x B) D)	surjec	tive but not inje er injective not		ve
2.	The se	set of values of <i>m</i> such that the roots of the equation $3x^2 + 2x + m(m - 1) = 0$							
	are of	of opposite signs is							
	A)	(0,1)	B)	[0,1]		C)	[0, 1)	D)	(0,∞)
3.	The fo	oot of the perpe	ndicula	r drawn	from t	he point	(-2, -2) to the	ne line x	x + y = 2 is
	A)	(-2,0)	B)	(1,1)		C)	(0,-2)	D)	(-1,-1)
4.		lines $3x + 4y$ - adius of the circ		0 and 6	5x + 8y	+9=	0 are tangents	to the sa	ame circle, then
	A)	5	B)	<u>5</u> 2		C)	<u>5</u> 4	D)	<u>5</u> 3
5.	the ve	uilateral triang			perime	ter of th			the vertices at $24\sqrt{3}$
	A)	12	в)	1273		C)	873	D)	247 3
6.	The equation of the sphere passing through origin and having radius 1 and centre on the positive $z - axis$ is								
	A)	$x^2 + y^2 + z^2 -$	-2z = 0		B)	$x^{2} + y$	$v^2 + z^2 - 2x - 2$	y = 0	
	C)	$x^2 + y^2 + z^2 -$	-2y=0	I	D)	$x^2 + y$	$z^{2} + z^{2} - 2z = 1$		
7.	If <i>f</i> (2	$x) = \begin{cases} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}, \\ 0 \end{cases}$	$ifx \neq$ ifx =	0 0					
	Then	$\lim_{x\to 0} f(x) \text{ is }$							
	A)	0	B)	1		C)	-1	D)	Does not exist
8.	Suppo	se(x) = x - [x] when	the $[x]$ defined as	enotes t	he great	test integer less	than or	equal to x , then
	$\lim_{n\to 0}\frac{(x)}{x}$	$\frac{(2x)+\dots+(nx)}{n^2}$ is	5						
	A)	x	B)	$\frac{x}{2}$		C)	$\frac{x}{3}$	D)	$\frac{x}{4}$

9. A bag contains 3black, 3 white and 1 red balls. Three balls are drawn one after the other without replacement. The probability that the third ball is red is:

A)
$$\frac{5}{7}$$
 B) $\frac{2}{7}$ C) $\frac{3}{7}$ D) $\frac{1}{7}$

10. A problem in statistics is given to three students whose chances of solving it individually are $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ respectively. The probability that the problems was solved by exactly one of them is

A)
$$\frac{11}{30}$$
 B) $\frac{12}{30}$ C) $\frac{13}{30}$ D) $\frac{7}{30}$
If $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0\\ 0 & x = 0 \end{cases}$

then,

11.

- A) f is not continues at x = 0
- B) f is continues everywhere but it is not differentiable at at x = 0
- C) f is differentiable everywhere but its first derivative f'(x) is not continuous
- D) f is infinitely differentiable

12. If
$$\int \frac{x \tan^{-1} x}{\sqrt{1+x^2}} dx = \int x \tan^{-1} x + g(x)$$
, then
A) $f(x) = \sqrt{1+x^2}, g(x) = -\log(x+\sqrt{1+x^2}) + c$
B) $f(x) = \frac{1}{\sqrt{1+x^2}}, g(x) = -\log(x-\sqrt{1+x^2}) + c$
C) $f(x) = -\sqrt{1+x^2}, g(x) = \log(x+\sqrt{1+x^2}) + c$
D) $f(x) = \sqrt{1+x^2}, g(x) = -\log(x-\sqrt{1+x^2}) + c$
13. Let (x_n) and (y_n) be two real sequences with $x_n = \frac{2^n}{n!}, y_n = n^{\frac{1}{n}}, n \ge 1$
A) (x_n) converges to 0 and (y_n) converges to 1

- B) (x_n) converges to 1 and (y_n) converges to 1
- C) (x_n) converges to 1 and (y_n) converges to 0
- D) (x_n) converges to 0 and (y_n) converges to 0
- 14. The value of the integral $\int_0^3 [x] d(x^2) dx$, where [x] denotes the greatest integer not greater than x is

A)
$$\frac{9}{2}$$
 B) 13 C) $\frac{55}{3}$ D) 10

15. Let f be the function defined by $f(x) = \begin{cases} x \sin(\frac{\pi}{x}), & 0 < x \le 2\\ 0, & x = 0 \end{cases}$. Then

- A) f is continuous but not of bounded variation
- B) *f* is bounded and not of bounded variation
- C) *f* is neither continuous nor of bounded variation
- D) *f* is bounded, continuous and of bounded variation

16. Let $\langle f_n \rangle$ be a sequence of non-negative measurable functions that converges almost everywhere to a function f and if $f_n \leq f$, for all n, then

- A) $\int f < \lim \int f_n$ B) $\int f = \lim \int f_n$
- C) $\int f = 0$ D) $\int f > \lim \int f_n$

17. Suppose $= f(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$. Then

- A) f(z) converges for |z| < 1 and diverges at z=1
- B) f(z) converges for $|z| \le 1$
- C) f(z) converges for |z| > 1
- D) f(z) converges for all z
- 18. Let x be a connected open subset of \mathbb{C} and $f: X \to \mathbb{C}$ be an analytic function. Then which of the following is true?
 - A) If f(z) is real for all $z \in X$, then f is a constant function
 - B) If f(z) is real for all $z \in X$, then $f \equiv 0$
 - C) If f(z) is purely imaginary for all $z \in X$, then $f \equiv 0$
 - D) If f(z) is real for all $z \in X$, then f(z) > 0 for all z

19. Let *C* be the circle
$$\{z: |z| = 2\}$$
. The value of $\int_{c} \frac{e^{iz}}{(z^2 + 10)\sin z} dz$ is

A) $2\pi i$ B) πi C) $-2\pi i$ D) 0

20. If
$$z_{i,i} = 1, 2, \dots 5$$
 are the 5th roots of unity, then $\sum_{i=1}^{5} \frac{1}{z_i}$ is

A) 5 B)
$$\frac{1}{5}$$
 C) 0 D) 5i

21.	Let G be an infinite cyclic group. Then the number of automorphisms on G is A) 1 B) 2 C) 3 D) 4						
22.	The largest order of an element in $\mathbb{Z}_4 \times \mathbb{Z}_8 \times \mathbb{Z}_3$ is A) 96 B) 48 C) 24 D) 12						
23.	The inverse of the permutation $(1, 2, 3)$ $(4, 7, 8)$ in S_8 isA) $(1, 3, 2)$ $(4, 7, 8)$ B) $(1, 2, 3)$ $(4, 7, 8)$ C) $(1, 3, 2)$ $(7, 4, 8)$ D) $(1, 3, 2)$ $(4, 8, 7)$						
24.	The number of solutions of $x^2 + 8x - 3 = 0$ in \mathbb{Z}_{12} is A) 0 B) 1 C) 2 D) 12						
25.	 Which of the following is true? A) The fields R and C are isomorphic B) 2Z and 3Z are isomorphic rings C) There is only one ring homomorphism from Z to Z D) There is only one group homomorphism from Z to Z 						
26.	The number of zero divisors of \mathbb{Z}_{360} is A) 360 B) 180 C) 96 D) 48						
27.	Suppose $f(x) = x^4 + 3x^2 + 2$. Which of the following is true? A) $f(x)$ is irreducible over \mathbb{R} B) $f(x)$ is irreducible over \mathbb{Q} but reducible over \mathbb{R} C) $f(x)$ is irreducible over \mathbb{C} D) $f(x)$ is reducible over \mathbb{Q} and \mathbb{R}						
28.	Which of the following is true?A) π is algebraic over \mathbb{R} B) π is algebraic over \mathbb{Q} C) $\sqrt{2}$ is transcendental over \mathbb{R} D) $\sqrt{2} + \sqrt{3}$ is transcendental over \mathbb{R}						
29.	The degree of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} is A) 1 B) 2 C) 4 D) 8						
30.	Let <i>R</i> be a ring with unity and <i>M</i> be an ideal containing a unit, then A) <i>M</i> is a proper ideal B) $M = R$ C) <i>R</i> / <i>M</i> is a field, if <i>R</i> is commutative ring D) <i>M</i> is the trivial ideal {0}						
31.	Let <i>A</i> and <i>B</i> be two square matrices of same order defined over \mathbb{R} and <i>B</i> be non-singular. Then, A) rank $(AB) = \operatorname{rank}(B)$ B) rank $(BA) = \operatorname{rank}(B)$ C) rank $(AB) = \operatorname{rank}(A)$ D) rank $(AB) \le \operatorname{rank}(B)$						
32.	The value of <i>a</i> for which the system of equations $x + y + z = 1, x - y + 2z = 0$, 2x + 3z = a has infinitely many solutions is A) 1 B) 2 C) 3 D) 0						

33. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x, x + y, x + y + z). The null space of *T* is A) $\{(x, y, z): x - y = 0\}$ B) $\{(x, y, z): x + y = 0\}$ C) $\{(x, y, z): y - z = 0\}$ D) $\{(0, 0, 0)\}$

34. Suppose
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Then

A) A and B have different characteristic equations but the same minimal polynomials

- B) *A* and *B* are diagonalizable
- C) *A* is diagonalizable but *B* is not
- D) *B* is diagonalizable but *A* is not

35. Let A ∈ M₃(ℝ), the set of all 3 x 3 matrices over ℝ, be a symmetric matrix. Which of the following can be the characteristic values of A?
A) 1,0,1
B) 1,1+i,1-i

C) 1, i, -i D) 0, 1, i

36. If the characteristic roots of $\in M_3(\mathbb{R})$ are $1, \omega, \omega^2$, the cube roots of unity, then the characteristic roots of A^{-1} are

A)	$1, \omega, \omega^2$	B)	$2, 1 + \omega, 1 + \omega^2$
C)	$1, 1 - \omega, 1 - \omega^2,$	D)	1, 1, 1

37. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (y, 2x). $S = \{(x, y): x^2 + y^2 = 1\}$. Then T(S) is

A)	$\{(x, y): x^2 + y^2 = 1\}$	B)	$\{(x, y): 2x^2 + y^2 = 1\}$

C) {
$$(x, y): 2x^2 + y^2 = 2$$
} D) { $(x, y): x^2 + 2y^2 = 2$ }

38.If n is an odd integer,
$$n^2$$
 is of the formA) $8k + 1, k \in \mathbb{Z}$ B) $8k - 1, k \in \mathbb{Z}$ C) $16k + 1, k \in \mathbb{Z}$ D) $16k - 1, k \in \mathbb{Z}$

39.	The h	ighest into	eger value of	value of n such that 3^n divides 174960			
	A)	5	B)	6	C) 7	D)	8

- 40. Which of the following is not true if *n* is an integer greater than 1?
 - A) $1 + 2 + \dots + (n 1) \equiv 0 \pmod{n}$
 - B) $1^2 + 2^2 + \dots + (n-1)^2 \equiv 0 \pmod{n}$
 - C) $1^3 + 2^3 + \dots + (n-1)^3 \equiv 0 \pmod{n}$
 - D) $1^2 2^2 + \dots + (2n-1)^2 (2n)^2 \equiv 0 \pmod{n}$

41. The orthogonal trajectories of the family of curve $y^2 = 4a(x + a)$ is A) $y^2 = 4a(x + a)^2$ B) $x^2 = 4a(y + a)$ C) y = 4a(x + a) D) $y^2 = 4a(x + a)$

- 42. If W is the Wronskian of the differential equation y'' + y = 0, then
 - A) |W| = 1 B) |W| > 1 C) |W| < 1 D) W = 0

43. Let $\{P_n(x)\}$ be the sequence of Legendre polynomials

A)
$$\int_{-1}^{1} P_n(x) P_m(x) dx = 1$$
 if $m = n$

B)
$$\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{1}{2n+1}$$
 if $m \neq n$

C)
$$\int_{-1}^{1} P_n(x) P_m(x) dx = 0$$
 if $m = n$

D)
$$\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1}$$
 if $m = n$

44. Let $J_p(x)$ denote the Bessel function. Which of the following is true?

A)
$$\frac{d}{dx}\left(x^p J_p(x)\right) = x^{p-1} J_{p-1}(x)$$

B)
$$\frac{d}{dx}\left(x^p J_p(x)\right) = x^p J_{p-1}(x)$$

C)
$$\frac{d}{dx}\left(x^{-p}J_p(x)\right) = x^{-p}J_{p+1}(x)$$

D)
$$\frac{d}{dx}\left(x^{-p}J_p(x)\right) = x^{-p}J_{p-1}(x)$$

The solution of the partial differential equation $(z - y)\frac{\partial u}{\partial x} + (x - z)\frac{\partial u}{\partial y} = y - x$ is 45.

- $x^{2} + y^{2} + z^{2} = f(x + y z)$ A)
- $x^{2} + y^{2} + z^{2} = f(x y + z)$ $x^{2} + y^{2} + z^{2} = f(x y + z)$ $x^{2} + y^{2} + z^{2} = f(x + y + z)$ $x^{2} + y^{2} z^{2} = f(x + y + z)$ B)
- C) D)

The solution of the partial differential equation $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y}$ 46.

- $az = (ax + y)^2 + c$ $z = (x y)^2 + c$ B) $z^2 = (ax + y)^2 + c$ D) $2az = (ax + y)^2 + c$ A) C)
- The equation $2u_{xx} + 4xy u_{xy} u_{yy} = 0$ is 47. Parabolic A) B) Elliptic Hyperbolic D) Parabolic only in the region where $y \ge 0$ C)

Suppose $X = \{0, 1, 2, 3\}, \tau_1 = \{X, \emptyset, \{0\}, \{3\}, \{0, 3\}\}, \tau_2 = \{X, \emptyset, \{3\}, \{0, 1, 3\}\}$. Let the 48. map $f: (X, \tau_1) \to (X, \tau_2)$ be defined as f(x) = x. Then

- f is continuous but not open. A)
- f is open and not continuous. B)
- C) f is both open and continuous.
- f is neither open nor continuous. D)

- 49. Let X = C[0, 1], the collection of all continuous function on the closed interval [0, 1]. Consider the metrics ρ and d defined by, $\rho(f, g) = sup_{x \in X} |f(x) - g(x)|$ and $d(f,g) = \int_0^1 |f(x) - g(x)| dx$. Then
 - A) The topology generated by ρ is stronger than the topology generated by d
 - B) The topology generated by d is stronger than the topology generated by ρ
 - C) Both *d* and ρ generate the same topology
 - D) The largest topology contained in the intersection of the topologies generated by ρ and *d* is the trivial topology.
- 50. Which of the following is not a topological property?
 - A) Compactness B) Connectedness
 - C) Completeness D) First countability
- 51. Let $(X, \|, \|)$ be a normed linear space over \mathbb{C} . Then which of the following is not true?
 - A) Every closed subset of *X* is compact.
 - B) If $\{x \in X : || x || \le 1\}$ is compact, then X is finite dimensional.
 - C) If every closed and bounded subset of *X* is compact then *X* is finite dimensional.
 - D) If $\{x \in X : || x || \le 1\}$ is compact, then X is infinite dimensional.
- 52. Let $X = \mathbb{R}^2$ with norm $\| \|$ defined by $\| (x, y) \| = \sqrt{x^2 + y^2}$ and $f: X \to X$ with f(x, y) = x + y. Then $\| f \|$ is A) 1 B) $\sqrt{2}$ C) 2 D) $\sqrt{3}$
- 53. Suppose $X = L^2[0, 1]$ with inner product defined by $\langle f(t), g(t) \rangle = \int_0^1 f(t) \overline{g(t)} dt$. If f(t) = t and g(t) = 1 t, then || f g ||, where ||, || is the norm induced by the inner product.
 - A) 1 B) $\frac{1}{3}$ C) $\frac{1}{6}$ D) $\frac{1}{2}$
- 54. Suppose $X = L^2[-\pi, -\pi]$. For each $n \in \mathbb{N}$, let (f_n) be a sequence of functions defined on $[-\pi, \pi]$, by $f_n(t) = e^{int}$. Then,
 - A) $\{f_n\}$ is an orthonormal set in *X*
 - B) $\{f_n\}$ is an orthogonal set but not orthonormal in X
 - C) $\{f_n\}$ is neither orthonormal set nor orthogonal in X
 - D) $\{f_n\}$ is both orthonormal and orthogonal in *X*
- 55. Let *P* be the projection map defined on a normed linear space *X* and *I* the identity map. Which of the following is not true?
 - A) I P is also a projection
 - B) Range of *P* is the zero space of I P
 - C) Zero space of P is the zero space of I P
 - D) There can be a non-zero element in the intersection of Range space of P and zero space of P

56. The area of the triangle whose vertices are the third roots of unity in the complex plane is

A)
$$\frac{\sqrt{3}}{4}$$
 B) $\frac{\sqrt{3}}{2}$ C) $\sqrt{3}$ D) $\frac{3\sqrt{3}}{4}$

57. The area of the region
$$\{(x, y) \in \mathbb{R}^2; x^2 \le y \le 1 - x^2\}$$
 is

A)
$$\frac{2}{3}$$
 B) $\frac{2\sqrt{2}}{3}$ C) $\frac{2}{\sqrt{3}}$ D) $2\sqrt{3}$

58. From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there on the committee. In how many ways can it be done?

A) 525 B) 756 C) 221 D) 635

59. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$. Then

- A) both series are conditionally convergent
- B) both series are absolutely convergent
- C) the first series is conditionally convergent and the second series is absolutely convergent
- D) the first series is absolutely convergent and the second series is conditionally convergent

60. The number of zeros of $z^5 + 3z^2 + 1$ in |z| < 1, counted with multiplicity is

61. The harmonic conjugate of the function $u(x, y) = x^3 - 3xy^2$ is

A)
$$3x^2y - y^3$$
 B) $3xy^2$ C) $y^3 - 3xy^2$ D) $3xy^2 - y^3$

62. The total number of subgroups of a cyclic group of order 24 is

A) 8 B) 6 C) 4 D) 2
63. If the matrix
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$
 is invertible in $\mathbb{Z}/n\mathbb{Z}$, then

(i) gcd(2, n) = 1 (ii) gcd(3, n) = 1 (iii) gcd(6, n) = 1

Choose the correct statement(s):

- A) (i) only B) (ii) only
- C) (i) and (ii) only D) (i), (ii) and (iii)

The number of subfields of a field with 2^8 elements is: 64. 1 B) 2 C) 4 A) D) 8 Let I, J be ideals in $\mathbb{Z}[x]$ generated by $x^3 + x^2 + x + 1$ and $x^3 - 2x^2 + x - 2$ respectively. 65. Then I + J is generated by the polynomial A) $2x^3 - x^2 + 2x - 1$ B) x + 1 $x^{2} + 1$ C) x – 1 D) Which of the following is necessarily an invertible matrix? 66. A) A nilpotent matrix B) An idempotent matrix An orthogonal matrix C) D) A symmetric matrix The rank of the matrix $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 5 & 4 & 2 & 6 \\ 4 & 2 & 2 & 5 \end{pmatrix}$ is 67. A) 1 3 B) 2 C) D) 4 68. Let A be an $n \times n$ matrix. Then det(5A) = ... B) $5^{n}det(A)$ C) 5^{2} det(A) $n^{5}det(A)$ A) 5det(A) D) The matrix of change of basis from the standard basis (e_1, e_2) of \mathbb{R}^2 to $(e_1 + e_2, e_1 - e_2)$ is 69. A) $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ B) $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ C) $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ D) $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ 70. Which of the following maps are linear transformations from \mathbb{R}^2 to \mathbb{R}^3 ? f(x, y) = (x + 2, y + 2, 2) (ii) f(x, y) = (x + y, x - y, 0)(i) (iii) f(x, y) = (x, y, xy) (iv) f(x, y) = (x + y, x - y, 2y)(i) and (ii) A) B) (ii) and (iii) C) (ii) and (iv) D) (iii) and (iv) Let T be a linear operator on \mathbb{C}^n , n > 1 such that every non-zero vector of \mathbb{C}^n is an eigen 71. vector of T. Then all eigen values of T are distinct A) all eigen values of T are real B) all eigen values of T are equal C)

D) T must be the zero matrix

72. Let V be the the vector space of all polynomials with degree \leq n and let T be any linear functional on V. Then dim(Ker T) is

A) 1 B)
$$n-1$$
 C) n D) $n+1$

73. The system $x \equiv 1 \pmod{6}$, $x \equiv 1 \pmod{4}$ has

- A) exactly one solution, modulo12
- B) exactly two solutions, modulo12
- C) exactly six solutions, modulo12
- D) no solution

74. Find a collection of linearly independent solutions of $\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} = 0$.

- A) $\{1, x, e^x, e^{-x}\}$ B) $\{1, x, e^{-x}, xe^{-x}\}$
- C) $\{1, x, e^x, xe^x\}$ D) $\{1, x, e^x, xe^{-x}\}$

75. The envelope of the 1-parameter family $(x - a)^2 + (y - 2a)^2 + z^2 = 1$ is

- A) $z = \pm 1$ B) $(2x y)^2 + 5z^2 = 5$
- C) $(2x y)^2 = 1$ D) $x^2 + y^2 = 1$

76. Which of the following is a wave equation?

A) $u_{tt} = u_{xx}$ B) $u_t = u_x$ C) $u_t = u_{xx}$ D) $u_{tt} = u_x$

77. Which of the following is is not a metric on \mathbb{R} ?

A) $d(x,y) = \sqrt{|x-y|}$ B) $d(x,y) = |e^x - e^y|$

C)
$$d(x,y) = |x^3 - y^3|$$
 D) $d(x,y) = \frac{||x| - |y||}{1 + |xy|}$

- 78. Let (X, d) be a metric space. For $A, B \subseteq X$, define $d(A, B) == \inf\{d(x, y); x \in A, y \in B\}$. Choose the correct statement(s).
 - (i) If A and B are disjoint, then d(A, B) > 0
 - (ii) If A and B are closed and disjoint, then d(A, B) > 0
 - (iii) If A and B are compact and disjoint, then d(A, B) > 0
 - A) (i),(ii) and (iii) B) (ii) and (iii) only
 - C) (iii) only D) none of these

- 79. Which of the following is not true for a non-trivial linear vector space X?
 - A) There is a norm on X
 - B) There is a norm on X which induces the discrete metric
 - C) The sum of two norms on X is a norm on X
 - D) Any metric induced by a norm on X is unbounded
- 80. Which of the following space is a Hilbert space?

A) l^{α}	° space	B)	l ¹ space	C)	l ² space	D)	l ⁴ space
-----------------	---------	----	----------------------	----	----------------------	----	----------------------